
Abstract. It is shown that the cross product
tIJ �Rx� � gIJ �Rx� � hIJ �Rx�, where gIJ

s �R� � �cI�Rx� ÿ cJ

�Rx��y @H�R�@s �cI�Rx� � cJ �Rx��, hIJ
s �R� � cI �Rx�y @H�R�

@s
cJ �Rx�, s is an internal nuclear coordinate, the cI�R�
satisfy �H�R� ÿ EI�R��cI�R� � 0 and H�R� is the elec-
tronic Hamiltonian matrix, is a unique property of a
conical intersection at Rx. t

IJ �Rx� � 0 when Rx is located
at the intersection of two (or more) seams of conical
intersection. This criterion for an intersection of two
seams of conical intersection has important implications
for algorithms that seek to locate such points. Here
it is used to analyze the trifurcation of a generic
C2v

2S�1Aÿ 2S�1B seam of conical intersection, analogous
to those recently found in AlH2 and CH2.
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1 Introduction

For two states of the same spin-multiplicity in molecules
of the type AB2 accidental conical intersections are
usually [1, 2] thought to occur for states of distinct
spatial symmetry at C2v (and C1v) nuclear con®gura-
tions. Expressed in terms of standard Jacobi coordinates
R � �R; r; c�, Fig.1, such a seam of conical intersection
could be parameterized as Rx�b� � �R�b�; r�b�; cx) where
cx � 90� for C2v and (0�,180�) for C1v geometries.
Deviations from these ``high symmetry'' geometries
would then result in avoided intersections [1, 2]. This
conventional wisdom is, however known to be overly
simplistic [3] since in triatomic or larger molecules
according to the noncrossing rule [4±6] potential energy
surfaces corresponding to states of the same symmetry
are allowed (but not required) to intersect. While the
location of such ``same symmetry'' intersections is far
from a trivial matter, recent computational advances

have made the determination of such intersections
relatively routine [7, 8].

Recently a much less common consequence of the
noncrossing rule has been encountered for the 12A0±22A0
seam of conical intersection in AlH2 [9], and the
23A00±33A00 seam of conical intersection in CH2 [10]. For
these molecules it was found that the C2v seam of conical
intersection trifurcates: the seam of conical intersection
has exclusively C2v symmetry for b < bd, while at b � bd
two symmetry equivalent branches of a Cs seam of con-
ical intersection emerge and the C2v seam continues.
Equivalently at Rx�bd� the C2v seam of conical intersec-
tion intersects a Cs seam of conical intersection. This
situation is illustrated in Fig. 2 which is modeled after the
23A00±33A00 seam of conical intersection in CH2 as pre-
sented in Fig. 5 of Ref. [10]. Previously a similar situation
was identi®ed for the 11A0±21A0 seam of conical inter-
section in ozone [11]. Berry and Wilkinson have referred
to points of conical intersection, denoted by Rx when the
parameter b can be suppressed, as diabolical points [12].
With this in mind, points at the intersection of two seams
of conical intersection will be referred to as doubly (or in
general, multiply) diabolical points and denoted Rdd .

The existence of these doubly diabolical points is
signi®cant from both conceptual and practical perspec-
tives. Their existence signi®cantly alters our intuition
concerning the nature of conical intersections in AB2

type molecules. They can also be expected to have im-
portant implications for nonadiabatic dynamics. In this
work these doubly diabolical points in triatomic mole-
cules are considered. A criterion that can be useful
computationally for locating such points is introduced
and explained using model Hamiltonians and a form of
degenerate perturbation theory for conical intersections
[13, 14]. The ideas presented in this work are illustrated
using a model for the I2S�1A±J2S�1A seam of conical
intersection encountered in AlH2 and CH2. Finally a
numerical application is brie¯y discussed.

2 Intersecting seams of conical intersection

In view of the comparatively novel nature of this
phenomenon it is useful to begin this section with simple
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model Hamiltonians that exhibit intersecting seams of
conical intersection.

2.1 Model Hamiltonians

Consider the electronic Hamiltonian:

Hi�R� � S�R� � G�R� Vi�R�
Vi�R� S�R� ÿ G�R�

� �
� S�R�I� G�R�rz � Vi�R�rx �1�

for i � 1±2, where rj are the Pauli matrices, and
R � �x; y; z� denotes the orthogonal internal (here Car-
tesian) nuclear coordinates. The seam of intersection,
wi�b�;w � x; y; z; assumed here to be conical, is given by
the solutions of the equations

Vi�R� � G�R� � 0 : �2�
Then at any point Rx�b� on wi�b�, ti�Rx� the tangent to
wi�b� is given by the cross product

ti�Rx� � rG�Rx� � rVi�Rx� � g�Rx� � hi�Rx� : �3�
Assume for convenience that the origin is a diabolical
point for i � 1±2. Construct the composite Hamiltonian:

H1;2�R� � S�R�I� G�R�rz � V1�R�V2�R�rx : �4�
The seams of conical intersection for H1;2 are given by
the solutions to the equations

V1�R�V2�R� � G�R� � 0 �5�
which are the union of the above two seams,
w1�b�Uw2�b�. The tangent to these seams of conical
intersection t1;2�Rx�, is given by the cross product

t1;2�Rx� � rG�Rx�� rV1�Rx�V2�Rx�
� V2�Rx�g�Rx�� h1�Rx�� V1�Rx�g�Rx�� h2�Rx� :

�6�
For points on w1; V1�Rx� � 0 so that t1;2�Rx� points
in the direction of t1�Rx� whereas for points on w2;
V2�Rx� � 0 so that t1;2�Rx� points in the direction of
t2�Rx�. However, at Rdd � �0; 0; 0�, a doubly diabolical
point, t1;2�Rdd� � 0 although lim

Rx!Rdd

t1;2�Rx�= t1;2�Rx�
�� ��ÿ �!

� ti�Rx�= ti�Rx�j j where i � 1 or 2 according to whether
the limit is taken along w1 or w2. Similar results are
obtained using Gi in lieu of Vi .

2.2 Perturbation theory

It will be shown that the criterion t1;2�Rdd� � 0 is a
necessary condition for a doubly diabolical point. Using
degenerate perturbation theory [14] (see also [15]) it has
been shown that to ®rst order in displacements from an
arbitrary point of conical intersection Rx, the electronic
energies of the two adiabatic electronic states, WI�r;R�
and WJ �r;R�, are rigorously obtained from the Hamil-
tonian in Eq. (1) with

S�R� � EI�Rx� � gI�Rx� � gJ �Rx�
� �

=2 � dR �7a�
G�R� � gI�Rx� ÿ gJ �Rx�

� �
=2 � dR �7b�

V �R� � hIJ �Rx� � dR �7c�
where R � Rx � dR,

gI�R� � cI�Rx�y rH�R�� �cI�Rx� �8a�
gIJ �R� � gI�R� ÿ gJ �R�

� cI�Rx� ÿ cJ �Rx�
ÿ �y rH�R�� � cI�Rx� � cJ �Rx�

ÿ �
�8b�

hIJ �R� � cI�Rx�y rH�R�� �cJ �Rx� ; �8c�
and

WI�r;R� �
X

a

cI
a�R�wa�r;R� �9a�

so that the cI�R� satisfy
H�R� ÿ EI�R�� �cI�R� � 0 : �9b�
Thus tIJ �Rx�, the tangent to the seam of conical
intersection, is given by

tIJ �Rx� � gIJ �Rx�=2� hIJ �Rx� : �10�

Fig. 1. Jacobi coordinates for an AB2 molecule

Fig. 2. Trifurcation of the C2v seam of conical intersection based on
the model Hamiltonian in Eq. (12). The seam labelled C2v seam
[Cs seam] here is also denoted as the seam 1 [seam 2] in the text.
Loops �a� are in planes parallel to the (x,z) plane. Loops �b� are in
planes perpendicular to the tangent to seam (2). At the doubly
diabolical point, labelled x, loop �b� is in the (x,y) plane
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Since EI�Rx� � EJ �Rx�, cI�Rx� and cJ �Rx� are de®ned
only up to a one-parameter rotation so that neither
gIJ �Rx� nor hIJ �Rx� is uniquely de®ned. If the coordinate
system is chosen such that the x and y axes are
perpendicular to tIJ �Rx� then, gIJ �Rx� � �gx; gy� and
hIJ �Rx� � �hx; hy�. From Eqs. (8a±c) if cI�Rx� and
cJ �Rx� are replaced by ~cI�Rx� and ~cJ �Rx�

~cI�Rx�
~cJ �Rx�

� �
� cos h ÿ sin h

sin h cos h

� �
cI�Rx�
cJ �Rx�

� �
�11�

then gIJ is replaced by ~gIJ � �gx cos 2h� hx sin 2h;
gy cos 2h� hy sin 2h� and hIJ is replaced by ~hIJ �
�ÿgx sin 2h �hx cos 2h;ÿgy sin 2h� hy cos 2h�. It is then
straightforward to show that tIJ �Rx� � �gxhy ÿ gyhx�k̂
� �~gx

~hx ÿ ~gy
~hx� k̂ so that tIJ �Rx� is independent of this

one parameter rotation and thus is a unique property of
the diabolical point, Rx.

If gIJ �Rx� and hIJ �Rx� are nonzero and not parallel
then tIJ �Rx� is unique. In this case there cannot be two
linearly independent tangent vectors at Rx, that is Rx
cannot be a doubly diabolical point. On the other hand if
either of these conditions does not occur, so that
tIJ �Rx� � 0, a doubly diabolical point is possible. While
the condition tIJ �Rx� � 0 is necessary, it is not su�cient
for the existence of a doubly diabolical point since it oc-
curs at Renner-Teller intersections [16, 17]. In case the
perturbation expansion begins at quadratic terms while in
the case considered here there is one direction in which
the degeneracy is lifted in a linear manner. By judicious
choice of V2 it is also possible to design composite ha-
miltonians for which the degeneracy is lifted linearly in
one direction at intersections that are not doubly diabo-
lical. The situation is not considered here.

2.3 Trifurcation of a C2v seam of conical intersection
in AB2

In order to clarify the ideas presented above the
trifurcation illustrated in Fig. 2, which served to moti-
vate the present analysis, is considered using model
Hamiltonians. We de®ne model Hamiltonians (1) and
(2) and the associated surface normals by

G�R� � x rG � î �12a�
V1�R� � z rV1 � k̂ �12b�
V2�R� � y ÿ aÿ z2 rV2 � ĵÿ 2zk̂ �12c�
where the Cartesian coordinates can be thought of as
corresponding to x � r ÿ R; y � r � R and z � c. Since
t1 � ÿĵ, Hamiltonian (1) has the y-axis, the dashed line
in Fig. 2, as its seam of conical intersection (seam 1 the
C2v seam in Fig.2), while the Hamiltonian (2) has the
parabola in Fig. 2 (seam 2, the Cs seam in Fig.2) as its
seam of conical intersection, with t2 � 2zĵ� k̂.
Rdd � �0; a; 0� is a doubly diabolical point. In the vicinity
of Rdd Hamiltonians (1) and (2) have, to lowest order in
displacements, the form:

H1�x; z� � xrz � zrx; H2�x; y� � xrz � dyrx ; �13�

where the replacement y � a� dy has been used. As
shown by Longuet-Higgins [18], this linear dependence
of the matrix elements in Eq. (13) in the �x; z� plane for
Hamiltonian (1) and in the �x; y� plane for Hamiltonian
(2) gives rise to the geometric phase e�ect [15, 19, 20±22].
The geometric phase e�ect, the signature property of a
conical intersection, causes WI�r;R� ! ÿWI�r;R� when
R is transported along a closed loop containing an Rx.

Seam 1 �x � 0; y; z � 0� and seam 2 �x � 0,
y � a� z2; z� are seams of conical intersection of the
composite Hamiltonian H1;2 � Grz � V1V2rx. Here
t1;2 � �a� 3z2 ÿ y�ĵ� zk̂. Thus on seam 1, t1;2 � �aÿ y�ĵ
is parallel to t1 � ÿĵ, while on seam 2, t1;2 � 2z2ĵ� zk̂ is
parallel to t2 � 2zĵ� k̂, as expected.

We are interested in the properties of H1;2 near Rdd in
general and the geometric phase e�ect in particular. In
the vicinity of Rdd the composite Hamiltonian becomes:

H1;2�R� � xrz � z�dy ÿ z2�rx ; �14�
t1;2 vanishes at Rdd , as it must, although t1;2=jt1;2j ! �ĵ
along seam 1 and t1;2=jt1;2j ! �k̂ along seam 2. In view
of the limiting values of t1;2=jt1;2j at Rdd the geometric
phase e�ect should be considered for loops in the (x,z)
plane, seam 1, and (x,y) plane, seam 2.

Consider a sequence of closed loops in the (x,z) plane,
analogous to the loops denoted loops (a) in Fig. 2, but
with su�ciently large radii so as not to intersect seam 2.
For y < a these loops enclose a single diabolical point
while for y > a these loops enclose three (an odd number
of) diabolical points. For each of these classes of loops
the geometric phase e�ect is obtained [15, 17]. Here the
geometric phase e�ect re¯ects the behavior of the com-
posite Hamiltonian in the vicinity of seam 1, where for
dy 6� 0 the lowest-order terms are linear in x and z pro-
ducing the geometric phase e�ect as noted above. At
Rdd ; y � a�dy � 0�, there would appear to be a problem
since V1V2 � z3 which is not linear in z. However, despite
the absence of a linear dependence in V1V2 it is straight-
forward to show that since z is raised to an odd power the
geometric phase e�ect is still obtained. Therefore the
geometric phase e�ect persists for loops, of su�ciently
large radius, in the (x,z) plane for all values of y.

Next consider the sequence of closed loops denoted
loops (b) in Fig. 2. These loops contain diabolical points
on seam 2. For Rdd , z � 0 and the loop is in the �x; y�
plane. For jzj small the coupling is linear in dy, however,
for z � 0 the coupling vanishes and there can be no
geometric phase e�ect. Again this would appear to be a
problem since the geometric phase exists for loops (b) on
either side of z � 0 but not at z � 0. However, this
apparent contradiction is illusory since any loop in the
(x,y) plane must intersect two, singular, diabolical points
on seam 1.

At Rdd the two t1;2 are perpendicular. This need not
be the case as can be seen by taking G � x; V1 � y, and
V2 � y ÿ z. In this case the two seams intersect at a 45�
angle ± seam 1 is the z-axis and seam 2 is the line y � z in
the x � 0 plane. At Rdd � �0; 0; 0� the Hamiltonian ma-
trix for displacements in the plane perpendicular to seam
1, in the (x,y) plane, has the form H1;2 � xrz � y2rx
which clearly has a quadratic o�-diagonal coupling
matrix element.
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These examples illustrate that a variety of power-law
dependencies for the matrix elements of H1;2 in the vi-
cinity of Rdd are possible suggesting the lack of a more
general result for doubly diabolical points than the
criterion presented here.

2.4 Computational implications

Previously we have developed a highly e�cient algo-
rithm to locate general points of conical intersection in
which the Newton-Raphson equations

QIJ �R; n; k� gIJ �R� hIJ �R� kIJ �R�
gIJ �R�y 0 0 0

hIJ �R�y 0 0 0

kIJ �R�y 0y 0y 0

0BBBB@
1CCCCA

dR

dn1
dn2
dk

0BBB@
1CCCA

� ÿ

gI�R� � n1gIJ �R� � n2h
IJ �R� �P

i
kik

i�R�
EI�R� ÿ EJ �R�

0

K�R�

0BBBB@
1CCCCA�15�

are solved [8]. Here k; n are Lagrange mulipliers,

dk � k0 ÿ k; dn � n0 ÿ n; ki
s�R� � @Ki�R�

@s ;Ki�R� � 0 are

con-straint equations, and QIJ �R� is a second derivative
matrix [17]. The existence of nonvanishing gIJ and hIJ ,
Eq. (8), is essential to this algorithm. Thus on the basis
of the above analysis the determination of diabolical
points using this algorithm becomes problematic in the
vicinity of a doubly diabolical point. However, one can
turn this apparent limitation to advantage. By monitor-
ing jtIJ �Rx�j and tIJ �Rx�j=jtIJ �Rx�j one can anticipate the
(possible) existence of a doubly diabolical point. The
search can be extended to look for the additional seam
of conical intersection. Then the two seams can be
extrapolated into the region of the doubly diabolical
point to ®nd its location. Note that attempts to
understand the situation by monitoring gIJ or hIJ

individually would be futile.
To illustrate how this works in practice Fig. 3 plots

r and gIJ � hIJ along the Cs portion (the parabola in
Fig. 2) of the 23A00±33A00 seam of conical intersection in
CH2 noted in the introduction. The extended Gaussian
basis set based MCSCF/CI treatment, which is described
in detail elsewhere [10], comprises 561,114 con®guration-
state functions [23] [the w�r;R� in Eq. (9a)]. The key here
is the c! 90� limit of gIJ � hIJ . By explicit computation
it is known [10] that this limit will yield a point on the
C2v seam of conical intersection for these states, and
hence a doubly diabolical point. Thus gIJ � hIJ must
approach 0. This is in fact seen to be the case. Further r
(and EI and R which are not shown) can be extrapolated
to determine the c � 90� limit.

It has recently been found [24] that the 12A0±22A0
seam of conical intersection in BH2, a seam analogous to
that reported in AlH2, exhibits a trifurcation of the type
discussed in this work. As part of a forthcoming dis-
cussion of the 1; 22A0 potential energy surfaces in BH2

[24] a more detailed analysis of the computational
aspects of the ideas developed in this work will be
presented.

Acknowledgements. This work has bene®tted from a preprint of
Ref. [25] provided by K. Ruedenberg which also discusses the issue
of doubly diabolical points but from the perspective of approxi-
mate diabatic states.
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